Enzyme Nomenclature

Continued from EC 3.6.3

EC 3.6.4 Acting on acid anhydrides; involved in cellular and subcellular movement

Contents

EC 3.6.4.1 now EC 5.6.1.8
EC 3.6.4.2 now EC 5.6.1.2
EC 3.6.4.3 now EC 5.6.1.1
EC 3.6.4.4 now EC 5.6.1.3
EC 3.6.4.5 now EC 5.6.1.4
EC 3.6.4.6 vesicle-fusing ATPase
EC 3.6.4.7 peroxisome-assembly ATPase
EC 3.6.4.8 now EC 5.6.1.5
EC 3.6.4.9 now EC 5.6.1.7
EC 3.6.4.10 non-chaperonin molecular chaperone ATPase
EC 3.6.4.11 deleted
EC 3.6.4.12 now EC 5.6.2.3 and EC 5.6.2.4
EC 3.6.4.13 now EC 5.6.2.5


Entries

[EC 3.6.4.1 Transferred entry: myosin ATPase. Now EC 5.6.1.8, myosin ATPase(EC 3.6.4.1 created 1984 as EC 3.6.1.32, transferred 2000 to EC 3.6.4.1, deleted 2018)]

[EC 3.6.4.2 Transferred entry: dynein ATPase. Now EC 5.6.1.2, dynein ATPase(EC 3.6.4.2 created 1984 as EC 3.6.1.33, transferred 2000 to EC 3.6.4.2, deleted 2018)]

[EC 3.6.4.4 Transferred entry: plus-end-directed kinesin ATPase. Now EC 5.6.1.3, plus-end-directed kinesin ATPase(EC 3.6.4.4 created 2000, deleted 2018)]

[EC 3.6.4.3 Transferred entry: microtubule-severing ATPase. Now EC 5.6.1.1, microtubule-severing ATPase (EC 3.6.4.3 created 2000 as 3.6.4.3, deleted 2018)]

EC 3.6.4.4

Accepted name: plus-end-directed kinesin ATPase

Reaction: ATP + H2O = ADP + phosphate

Other name(s): kinesin

Systematic name: kinesin ATP phosphohydrolase (plus-end-directed)

Comments: Microtubular motor protein, involved in organelle movement, in mitosis and meiosis. In contrast to dynein, it moves along microtubules towards the plus end. Composed of two heavy (α) chains (110 kDa) and two or more light (β) chains (65-75 kDa). Also hydrolyses GTP.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:

References:

1. Vale, R.D., Reese, T.S. and Sheetz, M.P. Identification of a novel force-generating protein, kinesin, in microtubule-based motility. Cell 42 (1985) 39-50. [PMID: 3926325]

2. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389 (1997) 561-567. [PMID: 9335494]

3. Nakagawa, T., Tanaka, Y., Matsuoka, E., Kondo, S., Okada, Y., Noda, F., Kanai, Y. and Hirokawa, N. Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc. Natl. Acad. Sci. USA 94 (1997) 9654-9659. [PMID: 9275178]

[EC 3.6.4.4 created 2000]

[EC 3.6.4.5 Transferred entry: minus-end-directed kinesin ATPase. Now EC 5.6.1.4, minus-end-directed kinesin ATPase(EC 3.6.4.5 created 2000, deleted 2018)]

EC 3.6.4.6

Accepted name: vesicle-fusing ATPase

Reaction: ATP + H2O = ADP + phosphate

Systematic name: ATP phosphohydrolase (vesicle-fusing)

Comments: A large family of ATP-hydrolysing enzymes involved in the heterotypic fusion of membrane vesicles with target membranes and the homotypic fusion of various membrane compartments. They belong to the AAA-type (ATPase associated with a variety of cell activities) ATPase superfamily. They include peroxin, which apparently is involved in Zellweger's syndrome.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:

References:

1. Confalonieri, F. and Duguet, M. A 200-amino acid ATPase module in search of a basic function. BioEssays 17 (1995) 639-650. [PMID: 7646486]

2. Imamura, A., Tamura, S., Shimoyawa, N., Suzuki, Y., Zhang, Z., Tsukamoto, T., Orii, T., Kondo, N., Osumi, T. and Fujiki, Y. Temperature-sensitive mutation in PEX1 moderates the phenotypes of peroxisome deficiency disorders. Hum. Mol. Genet. 7 (1998) 2089-2094. [PMID: 9817926]

3. Babst, W., Wendland, B., Estepa, E.J. and Emr, S.D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17 (1998) 2982-2983. [PMID: 9606181]

[EC 3.6.4.6 created 2000]

EC 3.6.4.7

Accepted name: peroxisome-assembly ATPase

Reaction: ATP + H2O = ADP + phosphate

Other name(s): peroxisome assembly factor-2

Systematic name: ATP phosphohydrolase (peroxisome-assembling)

Comments: An extremely diversified group of enzymes that use the energy of ATP hydrolysis to import and assemble peroxisome components into the organelle. Their molecular masses range from 25 to 600 kDa.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:

References:

1. Lee, Y.J. and Wickner, R.B. AFG1, a new member of the SEC18-NSF, PAS1, CDC48-VCP, TBP family of ATPases. Yeast 8 (1992) 787-790. [PMID: 1441755]

2. Tsukamoto,T., Miura, S., Nakai, T., Yokota, S., Shimozawa, N., Suzuki, Y., Orii, T., Fujiki, Y., Sakai, F., Bogaki, A., Yasumo, H. and Osumi, T. Peroxisome assembly factor-2, a putative ATPase cloned by functional complementation on a peroxisome-deficient mammalian cell mutant. Nat. Genet. 11 (1995) 395-401. [PMID: 7493019]

3. Yahraus, T., Braverman, N., Dodt, G., Kalish, J.E., Morrell, J.C., Moser, H.W., Valle, D. and Gould, S.J. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J. 15 (1996) 2914-2923. [PMID: 8670792]

[EC 3.6.4.7 created 2000]

[EC 3.6.4.8 Transferred entry: proteasome ATPase. Now EC 5.6.1.5, proteasome ATPase(EC 3.6.4.8 created 2000, deleted 2018)]

[EC 3.6.4.9 Transferred entry: chaperonin ATPase. Now EC 5.6.1.7, chaperonin ATPase(EC 3.6.4.9 created 2000, deleted 2018)]

EC 3.6.4.10

Accepted name: non-chaperonin molecular chaperone ATPase

Reaction: ATP + H2O = ADP + phosphate

Other name(s): molecular chaperone Hsc70 ATPase

Systematic name: ATP phosphohydrolase (polypeptide-polymerizing)

Comments: This is a highly diverse group of enzymes that perform many functions that are similar to those of chaperonins. They comprise a number of heat-shock-cognate proteins. They are also active in clathrin uncoating and in the oligomerization of actin.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:

References:

1. Sadis, S. and Hightower, L.E. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange. Biochemistry 31 (1992) 9406-9412. [PMID: 1356434]

2. Blond-Elquindi, S., Fourie, A.M., Sambrook, J.F. and Gething, M.J. Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J. Biol. Chem. 268 (1993) 12730-12735. [PMID: 8509407]

3. Wawrzynow, A., Wojtkowiak, D., Marszalek, J., Banecki, B., Jonsen, M., Graves, B., Georgopoulos, C. and Zylicz, M. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J. 14 (1995) 1867-1877. [PMID: 7743994]

4. Sriram, M., Osipiuk, J., Freeman, B., Morimoto, R. and Joachimiak, A. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure 5 (1997) 403-414. [PMID: 9083109]

5. Li, X., Su, R.T., Hsu, H.T. and Sze, H. The molecular chaperone calnexin associated with the vacuolar H+-ATPase from oat seedlings. Plant Cell 10 (1998) 119-130. [PMID: 9477575]

[EC 3.6.4.10 created 2000]

[EC 3.6.4.11 Deleted entry: nucleoplasmin ATPase. The activity has been shown not to take place. (EC 3.6.4.11 created 2000, deleted 2018)]

[EC 3.6.4.12 Transferred entry: DNA helicase. Now EC 5.6.2.3, DNA 5-3 helicase and EC 5.6.2.4, DNA 3-5 helicase (EC 3.6.4.12 created 2009, deleted 2021)]

[EC 3.6.4.13 Transferred entry: RNA helicase. Now covered by EC 5.6.2.5, RNA 5'-3' helicase, EC 5.6.2.6, RNA 3'-5' helicase and EC 5.6.2.7, DEAD-box RNA helicase (EC 3.6.4.13 created 2009, deleted 2024]


Continued with EC 3.6.5
Return to EC 3 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page