Enzyme Nomenclature

Continued from EC 3.1.21 to EC 3.1.31

EC 3.2

Glycosylases

Sections

EC 3.2.1 Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds
EC 3.2.2 Hydrolysing N-Glycosyl Compounds
EC 3.2.3 Hydrolysing S-Glycosyl Compounds (discontinued)


EC 3.2.1 Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds

Contents

See separate file for EC 3.2.1.51 to EC 3.2.1.100, EC 3.2.1.101 to EC 3.2.1.150 and EC 3.2.1.151 to EC 3.2.1.205.

EC 3.2.1.1 α-amylase
EC 3.2.1.2 β-amylase
EC 3.2.1.3 glucan 1,4-α-glucosidase
EC 3.2.1.4 cellulase
EC 3.2.1.5 deleted
EC 3.2.1.6 endo-1,3(4)-β-glucanase
EC 3.2.1.7 inulinase
EC 3.2.1.8 endo-1,4-β-xylanase
EC 3.2.1.9 deleted
EC 3.2.1.10 oligo-1,6-glucosidase
EC 3.2.1.11 dextranase
EC 3.2.1.12 deleted, included in EC 3.2.1.54
EC 3.2.1.13 deleted, included in EC 3.2.1.54
EC 3.2.1.14 chitinase
EC 3.2.1.15 polygalacturonase
EC 3.2.1.16 deleted
EC 3.2.1.17 lysozyme
EC 3.2.1.18 exo-α-sialidase
EC 3.2.1.19 deleted
EC 3.2.1.20 α-glucosidase
EC 3.2.1.21 β-glucosidase
EC 3.2.1.22 α-galactosidase
EC 3.2.1.23 β-galactosidase
EC 3.2.1.24 α-mannosidase
EC 3.2.1.25 β-mannosidase
EC 3.2.1.26 β-fructofuranosidase
EC 3.2.1.27 deleted
EC 3.2.1.28 α,α-trehalase
EC 3.2.1.29 deleted, included in EC 3.2.1.52
EC 3.2.1.30 deleted, included in EC 3.2.1.52
EC 3.2.1.31 β-glucuronidase
EC 3.2.1.32 endo-1,3-β-xylanase
EC 3.2.1.33 amylo-1,6-glucosidase
EC 3.2.1.34 deleted, included in EC 3.2.1.35
EC 3.2.1.35 hyaluronoglucosaminidase
EC 3.2.1.36 hyaluronoglucuronidase
EC 3.2.1.37 xylan 1,4-β-xylosidase
EC 3.2.1.38 β-D-fucosidase
EC 3.2.1.39 glucan endo-1,3-β-D-glucosidase
EC 3.2.1.40 α-L-rhamnosidase
EC 3.2.1.41 pullulanase
EC 3.2.1.42 GDP-glucosidase
EC 3.2.1.43 β-L-rhamnosidase
EC 3.2.1.44 fucoidanase
EC 3.2.1.45 glucosylceramidase
EC 3.2.1.46 galactosylceramidase
EC 3.2.1.47 galactosylgalactosylglucosylceramidase
EC 3.2.1.48 sucrose α-glucosidase
EC 3.2.1.49 α-N-acetylgalactosaminidase
EC 3.2.1.50 α-N-acetylglucosaminidase

See the following files for:

EC 3.2.1.51 to EC 3.2.1.100
EC 3.2.1.101 to EC 3.2.1.150
EC 3.2.1.151 to EC 3.2.1.205

Entries

EC 3.2.1.1

Accepted name: α-amylase

Reaction: Endohydrolysis of (1→4)-α-D-glucosidic linkages in polysaccharides containing three or more (1→4)-α-linked D-glucose units

Other name(s): glycogenase; α amylase, α-amylase; endoamylase; Taka-amylase A; 1,4-α-D-glucan glucanohydrolase

Systematic name: 4-α-D-glucan glucanohydrolase

Comments: Acts on starch, glycogen and related polysaccharides and oligosaccharides in a random manner; reducing groups are liberated in the α-configuration. The term ‘α’ relates to the initial anomeric configuration of the free sugar group released and not to the configuration of the linkage hydrolysed.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9000-90-2

References:

1. Fischer, E.H. and Stein, E.A. α-Amylases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 313-343.

2. Manners, D.J. Enzymic synthesis and degradation of starch and glycogen. Adv. Carbohydr. Chem. 17 (1962) 371-430.

3. Schwimmer, S. and Balls, A.K. Isolation and properties of crystalline α-amylase from germinated barley. J. Biol. Chem. 179 (1949) 1063-1074.

[EC 3.2.1.1 created 1961]

EC 3.2.1.2

Accepted name: β-amylase

Reaction: Hydrolysis of (1→4)-α-D-glucosidic linkages in polysaccharides so as to remove successive maltose units from the non-reducing ends of the chains

Other name(s): saccharogen amylase; glycogenase; β amylase, β-amylase; 1,4-α-D-glucan maltohydrolase

Systematic name: 4-α-D-glucan maltohydrolase

Comments: Acts on starch, glycogen and related polysaccharides and oligosaccharides producing β-maltose by an inversion. The term ‘β’ relates to the initial anomeric configuration of the free sugar group released and not to the configuration of the linkage hydrolysed.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9000-91-3

References:

1. Balls, A.K., Walden, M.K. and Thompson, R.R. A crystalline β-amylase from sweet potatoes. J. Biol. Chem. 173 (1948) 9-19.

2. French, D. β-Amylases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 345-368.

3. Manners, D.J. Enzymic synthesis and degradation of starch and glycogen. Adv. Carbohydr. Chem. 17 (1962) 371-430.

[EC 3.2.1.2 created 1961]

EC 3.2.1.3

Accepted name: glucan 1,4-α-glucosidase

Reaction: Hydrolysis of terminal (1→4)-linked α-D-glucose residues successively from non-reducing ends of the chains with release of β-D-glucose

Other name(s): glucoamylase; amyloglucosidase; γ-amylase; lysosomal α-glucosidase; acid maltase; exo-1,4-α-glucosidase; glucose amylase; γ-1,4-glucan glucohydrolase; acid maltase; 1,4-α-D-glucan glucohydrolase

Systematic name: 4-α-D-glucan glucohydrolase

Comments: Most forms of the enzyme can rapidly hydrolyse 1,6-α-D-glucosidic bonds when the next bond in the sequence is 1,4, and some preparations of this enzyme hydrolyse 1,6- and 1,3-α-D-glucosidic bonds in other polysaccharides. This entry covers all such enzymes acting on polysaccharides more rapidly than on oligosaccharides. EC 3.2.1.20 α-glucosidase, from mammalian intestine, can catalyse similar reactions.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9032-08-0

References:

1. French, D. and Knapp, D.W. The maltase of Clostridium acetobutylicum. J. Biol. Chem. 187 (1950) 463-471.

2. Illingworth Brown, B. and Brown, D.H. The subcellular distribution of enzymes in type II glycogenosis and the occurrence of an oligo-α-1,4-glucan glucohydrolase in human tissues. Biochim. Biophys. Acta 110 (1965) 124-133. [PMID: 4286143]

3. Jeffrey, P.L., Brown, D.H. and Brown, B.I. Studies of lysosomal α-glucosidase. I. Purification and properties of the rat liver enzyme. Biochemistry 9 (1970) 1403-1415. [PMID: 4313883]

4. Kelly, J.J. and Alpers, D.H. Properties of human intestinal glucoamylase. Biochim. Biophys. Acta 315 (1973) 113-122. [PMID: 4743896]

5. Miller, K.D. and Copeland, W.H. A blood trans-α-glucosylase. Biochim. Biophys. Acta 22 (1956) 193-194.

6. Tsujisaka, Y., Fukimoto, J. and Yamamoto, T. Specificity of crystalline saccharogenic amylase of moulds. Nature 181 (1958) 770-771.

[EC 3.2.1.3 created 1961]

EC 3.2.1.4

Accepted name: cellulase

Reaction: Endohydrolysis of (1→4)-β-D-glucosidic linkages in cellulose, lichenin and cereal β-D-glucans

Other name(s): endo-1,4-β-D-glucanase; β-1,4-glucanase; β-1,4-endoglucan hydrolase; celluase A; cellulosin AP; endoglucanase D; alkali cellulase; cellulase A 3; celludextrinase; 9.5 cellulase; avicelase; pancellase SS; 1,4-(1,3;1,4)-β-D-glucan 4-glucanohydrolase

Systematic name: 4-(1,3;1,4)-β-D-glucan 4-glucanohydrolase

Comments: Will also hydrolyse 1,4-linkages in β-D-glucans also containing 1,3-linkages.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9012-54-8

References:

1. Datta, P.K., Hanson, K.R. and Whitaker, D.R. Improved procedures for preparation and characterization of Myrothecum cellulase. III. Molecular weight, amino acid composition, terminal residues, and other properties. Can. J. Biochem. Physiol. 41 (1963) 697-705. [PMID: 14025219]

2. Larner, J. Other glucosidases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 369-378.

3. Myers, F.L. and Northcote, D.H. Partial purification and some properties of a cellulase from Helix pomatia. Biochem. J. 71 (1959) 749-756.

4. Nishizawa, K. and Hashimoto, Y. Cellulose splitting enzymes. VI. Difference in the specificities of cellulase and β-glucosidase from Irpex lacteus. Arch. Biochem. Biophys. 81 (1959) 211-222.

5. Whitaker, D.R., Hanson, K.R. and Datta, P.K. Improved procedures for preparation and characterization of myrothecium cellulase. 2. Purification procedures. Can. J. Biochem. Physiol. 41 (1963) 671-696.

6. Hatfield, R. and Nevins, D.J. Purification and properties of an endoglucanase isolated from the cell walls of Zea mays seedlings. Carbohydr. Res. 148 (1986) 265-278.

7. Hatfield, R. and Nevins, D.J. Hydrolytic activity and substrate specificity of an endoglucanase from Zea mays seedling cell walls. Plant Physiol. 83 (1987) 203-207.

8. Inohue, M., Hayashgi, K. and Nevins, D.J. Polypeptide characteristics and immunological properties of exo- and endoglucanases purified from maize coleoptile cell walls. J. Plant Physiol. 154 (1999) 334-340.

[EC 3.2.1.4 created 1961, modified 2001]

[EC 3.2.1.5 Deleted entry: licheninase (EC 3.2.1.5 created 1961, deleted 1964)]

EC 3.2.1.6

Accepted name: endo-1,3(4)-β-glucanase

Reaction: Endohydrolysis of (1→3)- or (1→4)-linkages in β-D-glucans when the glucose residue whose reducing group is involved in the linkage to be hydrolysed is itself substituted at C-3

Other name(s): endo-1,3-β-D-glucanase; laminarinase; laminaranase; β-1,3-glucanase; β-1,3-1,4-glucanase; endo-1,3-β-glucanase; endo-β-1,3(4)-glucanase; endo-β-1,3-1,4-glucanase; endo-β-(1→3)-D-glucanase; endo-1,3-1,4-β-D-glucanase; endo-β-(1-3)-D-glucanase; endo-β-1,3-glucanase IV; endo-1,3-β-D-glucanase; 1,3-(1,3;1,4)-β-D-glucan 3(4)-glucanohydrolase

Systematic name: 3-(1→3;1→4)-β-D-glucan 3(4)-glucanohydrolase

Comments: Substrates include laminarin, lichenin and cereal D-glucans; different from EC 3.2.1.52 β-N-acetylhexosaminidase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 62213-14-3

References:

1. Barras, D.R. and Stone, B.A. β-1,3-Glucan hydrolases from Euglena gracilis. I. The nature of the hydrolases. Biochim. Biophys. Acta 191 (1969) 329-341. [PMID: 5354264]

2. Barras, D.R. and Stone, B.A. β-1,3-Glucan hydrolases from Euglena gracilis. II. Purification and properties of the β-1,3-glucan exo-hydrolase. Biochim. Biophys. Acta 191 (1969) 342-353. [PMID: 5354265]

3. Cunningham, L.W. and Manners, D.J. Enzymic degradation of lichenin. Biochem. J. 80 (1961) 42P-43P.

4. Reese, E.T. and Mandels, M. β-D-1,3-Glucanases in fungi. Can. J. Microbiol. 5 (1959) 173-185.

5. Sova, V.V., Elyakova, L.A. and Vaskovsky, V.E. Purification and some properties of β-1,3-glucan glucanohydrolase from the crystalline style of bivalvia, Spisula sachalinensis. Biochim. Biophys. Acta 212 (1970) 111-115. [PMID: 5500926]

[EC 3.2.1.6 created 1961, modified 1976]

EC 3.2.1.7

Accepted name: inulinase

Reaction: Endohydrolysis of (2→1)-β-D-fructosidic linkages in inulin

Other name(s): inulase; indoinulinase; endo-inulinase; exoinulinase; 2,1-β-D-fructan fructanohydrolase

Systematic name: 1-β-D-fructan fructanohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-67-6

References:

1. Adams, M., Richtmyer, N.K. and Hudson, C.S. Some enzymes present in highly purified invertase preparations; a contribution to the study of fructofuranosidases, galactosidases, glucosidases and mannosidases. J. Am. Chem. Soc. 65 (1943) 1369-1380.

[EC 3.2.1.7 created 1961]

EC 3.2.1.8

Accepted name: endo-1,4-β-xylanase

Reaction: Endohydrolysis of (1→4)-β-D-xylosidic linkages in xylans

Other name(s): endo-(1→4)-β-xylan 4-xylanohydrolase; endo-1,4-xylanase; xylanase; β-1,4-xylanase; endo-1,4-xylanase; endo-β-1,4-xylanase; endo-1,4-β-D-xylanase; 1,4-β-xylan xylanohydrolase; β-xylanase; β-1,4-xylan xylanohydrolase; endo-1,4-β-xylanase; β-D-xylanase

Systematic name: 4-β-D-xylan xylanohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-57-4

References:

1. Howard, B.H., Jones, G. and Purdom, M.R. The pentosanases of some rumen bacteria. Biochem. J. 74 (1960) 173-180.

2. Whistler, R.L. and Masek, E. Enzymatic hydolysis of xylan. J. Am. Chem. Soc. 77 (1955) 1241-1243.

[EC 3.2.1.8 created 1961]

[EC 3.2.1.9 Deleted entry: amylopectin-1,6-glucosidase (EC 3.2.1.9 created 1961, deleted 1972)]

EC 3.2.1.10

Accepted name: oligo-1,6-glucosidase

Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages in some oligosaccharides produced from starch and glycogen by EC 3.2.1.1 (α-amylase), and in isomaltose

Other name(s): limit dextrinase (erroneous); isomaltase; sucrase-isomaltase; exo-oligo-1,6-glucosidase; dextrin 6α-glucanohydrolase; α-limit dextrinase; dextrin 6-glucanohydrolase; oligosaccharide α-1,6-glucohydrolase; α-methylglucosidase

Systematic name: oligosaccharide α-1,6-glucohydrolase

Comments: This enzyme, like EC 3.2.1.33 (amylo-α-1,6-glucosidase), can release an α-1→6-linked glucose, whereas the shortest chain that can be released by EC 3.2.1.41 (pullulanase), EC 3.2.1.142 (limit dextrinase), and EC 3.2.1.68 (isoamylase) is maltose. It also hydrolyses isomaltulose (palatinose), isomaltotriose and panose, but has no action on glycogen or phosphorylase limit dextrin. The enzyme from intestinal mucosa is a single polypeptide chain that also catalyses the reaction of EC 3.2.1.48 (sucrose α-glucosidase). Differs from EC 3.2.1.33 (amylo-α-1,6-glucosidase) in its preference for short-chain substrates and in its not requiring the 6-glucosylated residue to be at a branch point, i.e. linked at both C-1 and C-4.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9032-15-9

References:

1. Hauri, H.-P., Quaroni, A. and Isselbacher, K.J. Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc. Natl. Acad. Sci. USA 76 (1979) 5183-5186. [PMID: 291933]

2. Sjöström, H., Norén, O., Christiansen, L., Wacker, H. and Semenza, G. A fully active, two-active-site, single-chain sucrase-isomaltase from pig small intestine. Implications for the biosynthesis of a mammalian integral stalked membrane protein. J. Biol. Chem. 255 (1980) 11332-11338. [PMID: 7002920]

3. Rodriguez, I.R., Taravel, F.R. and Whelan, W.J. Characterization and function of pig intestinal sucrase-isomaltase and its separate subunits. Eur J Biochem. 143 (1984) 575-582. [PMID: 6479163]

[EC 3.2.1.10 created 1961, modified 2000]

EC 3.2.1.11

Accepted name: dextranase

Reaction: Endohydrolysis of (1→6)-α-D-glucosidic linkages in dextran

Other name(s): dextran hydrolase; endodextranase; dextranase DL 2; DL 2; endo-dextranase; α-D-1,6-glucan-6-glucanohydrolase; 1,6-α-D-glucan 6-glucanohydrolase

Systematic name: 6-α-D-glucan 6-glucanohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-70-1

References:

1. Bailey, R.W. and Clarke, R.T.J. A bacterial dextranase. Biochem. J. 72 (1959) 49-54.

2. Deuel, H. and Stutz, E. Pectic substances and pectic enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 20 (1958) 341-382.

3. Fischer, E.H. and Stein, E.A. Cleavage of O- and S-glycosidic bonds (survey), in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York , 1960, pp. 301-312.

4. Rozenfel'd, E.L. and Lukomskaya, I.S. [The hydrolysis of 1:6 bonds of dextran by animal tissues.] Biokhimiya 21 (1956) 412-415. (in Russian)

[EC 3.2.1.11 created 1961]

[EC 3.2.1.12 Deleted entry: cycloheptaglucanase. Now included with EC 3.2.1.54 cyclomaltodextrinase (EC 3.2.1.12 created 1961, deleted 1976)]

[EC 3.2.1.13 Deleted entry: cyclohexaglucanase. Now included with EC 3.2.1.54 cyclomaltodextrinase (EC 3.2.1.13 created 1961, deleted 1976)]

EC 3.2.1.14

Accepted name: chitinase

Reaction: Random endo-hydrolysis of N-acetyl-β-D-glucosaminide (1→4)-β-linkages in chitin and chitodextrins

Glossary: chitin = [(1→4)-β-D-GlcpNAc]n = (1→4)-2-acetamido-2-deoxy-β-D-glucan

Other name(s): ChiC; chitodextrinase (ambiguous); 1,4-β-poly-N-acetylglucosaminidase; poly-β-glucosaminidase; β-1,4-poly-N-acetyl glucosamidinase; poly[1,4-(N-acetyl-β-D-glucosaminide)] glycanohydrolase

Systematic name: (1→4)-2-acetamido-2-deoxy-β-D-glucan glycanohydrolase

Comments: The enzyme binds to chitin and randomly cleaves glycosidic linkages in chitin and chitodextrins in a non-processive mode, generating chitooligosaccharides and free ends on which exo-chitinases and exo-chitodextrinases can act. Activity is greatly stimulated in the presence of EC 1.14.99.53, lytic chitin monoxygenase, which attacks the crystalline structure of chitin and makes the polymer more accesible to the chitinase. cf. EC 3.2.1.202, endo-chitodextrinase.

Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-06-3

References:

1. Zechmeister, L. and Tóth, G. Chromatographic adsorption of the enzymes of emulsin which act on chitins. Enzymologia 7 (1939) 165-169.

2. Tracey, M.V. Chitinase in some basidiomycetes. Biochem. J. 61 (1955) 579-586. [PMID: 13276340]

3. Fischer, E.H. and Stein, E.A. Cleavage of O- and S-glycosidic bonds (survey). In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds), The Enzymes, 2nd edn, vol. 4, Academic Press, New York, 1960, pp. 301-312.

4. Connell, T.D., Metzger, D.J., Lynch, J. and Folster, J.P. Endochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of Vibrio cholerae. J. Bacteriol. 180 (1998) 5591-5600. [PMID: 9791107]

5. Francetic, O., Badaut, C., Rimsky, S. and Pugsley, A.P. The ChiA (YheB) protein of Escherichia coli K-12 is an endochitinase whose gene is negatively controlled by the nucleoid-structuring protein H-NS. Mol. Microbiol. 35 (2000) 1506-1517. [PMID: 10760150]

6. Zverlov, V.V., Fuchs, K.P. and Schwarz, W.H. Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl. Environ. Microbiol. 68 (2002) 3176-3179. [PMID: 12039789]

7. Rottloff, S., Stieber, R., Maischak, H., Turini, F.G., Heubl, G. and Mithofer, A. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J. Exp. Bot. 62 (2011) 4639-4647. [PMID: 21633084]

[EC 3.2.1.14 created 1961, modified 2017]

EC 3.2.1.15

Accepted name: polygalacturonase

Reaction: Random hydrolysis of (1→4)-α-D-galactosiduronic linkages in pectate and other galacturonans

Other name(s): pectin depolymerase; pectinase; endopolygalacturonase; pectolase; pectin hydrolase; pectin polygalacturonase; endo-polygalacturonase; poly-α-1,4-galacturonide glycanohydrolase; endogalacturonase; endo-D-galacturonase; poly(1,4-α-D-galacturonide) glycanohydrolase

Systematic name: (1→4)-α-D-galacturonan glycanohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9032-75-1

References:

1. Deuel, H. and Stutz, E. Pectic substances and pectic enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 20 (1958) 341-382.

2. Lineweaver, H. and Jansen, E.F. Pectic enzymes. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 267-295.

3. McCready, R.M. and Seegmiller, C.G. Action of pectic enzymes on oligogalacturonic acids and some of their derivatives. Arch. Biochem. Biophys. 50 (1954) 440-450.

4. Mill, P.J. and Tuttobello, R. The pectic enzymes of Aspergillus niger. 2. Endopolygalacturonase. Biochem. J. 79 (1961) 57-64.

5. Phaff, H.J. and Demain, A.L. The unienzymatic nature of yeast polygalacturonase. J. Biol. Chem. 218 (1956) 875-884.

[EC 3.2.1.15 created 1961]

[EC 3.2.1.16 Deleted entry: alginase (EC 3.2.1.16 created 1961, deleted 1972)]

EC 3.2.1.17

Accepted name: lysozyme

Reaction: Hydrolysis of (1→4)-β-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins

Other name(s): muramidase; globulin G; mucopeptide glucohydrolase; globulin G1; N,O-diacetylmuramidase; lysozyme g; L-7001; 1,4-N-acetylmuramidase; mucopeptide N-acetylmuramoylhydrolase; PR1-lysozyme

Systematic name: peptidoglycan N-acetylmuramoylhydrolase

Comments: cf. also EC 3.2.1.14 chitinase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9001-63-2

References:

1. Blade, C.C.F., Johnson, L.N., Mair, G.A., North, A.C.T., Phillips, D.C. and Sarma, V.R. Crystallographic studies of the activity of hen egg-white lysozyme. Proc. R. Soc. Lond. B: Biol. Sci. 167 (1967) 378-388. [PMID: 4382801]

2. Blake, C.C.F., Mair, G.A., North, A.C.T., Phillips, D.C. and Sarma, V.R. On the conformation of the hen egg-white lysozyme molecule. Proc. R. Soc. Lond. B: Biol. Sci. 167 (1967) 365-377. [PMID: 4382800]

3. Jollès, P. Lysozyme, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 431-445.

[EC 3.2.1.17 created 1961]

EC 3.2.1.18

Accepted name: exo-α-sialidase

Reaction: Hydrolysis of α-(2→3)-, α-(2→6)-, α-(2→8)- glycosidic linkages of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates

Other name(s): neuraminidase; sialidase; α-neuraminidase; acetylneuraminidase

Systematic name: acetylneuraminyl hydrolase

Comments: The enzyme does not act on 4-O-acetylated sialic acids. endo-α-Sialidase activity is listed as EC 3.2.1.129, endo-α-sialidase. See also EC 4.2.2.15 anhydrosialidase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9001-67-6

References:

1. Schauer, R. Sialic acids. Adv. Carbohydr. Chem. Biochem. 40 (1982) 131-234.

2. Cabezas, J.A. Some questions and suggestions on the type references of the official nomenclature (IUB) for sialidase(s) and endosialidase. Biochem. J. 278 (1991) 311-312. [PMID: 1883340]

[EC 3.2.1.18 created 1961, modified 1999]

[EC 3.2.1.19 Deleted entry: heparinase (EC 3.2.1.19 created 1961, deleted 1978)]

EC 3.2.1.20

Accepted name: α-glucosidase

Reaction: Hydrolysis of terminal, non-reducing (1→4)-linked α-D-glucose residues with release of α-D-glucose

Other name(s): maltase; glucoinvertase; glucosidosucrase; maltase-glucoamylase; α-glucopyranosidase; glucosidoinvertase; α-D-glucosidase; α-glucoside hydrolase; α-1,4-glucosidase

Systematic name: α-D-glucoside glucohydrolase

Comments: This single entry covers a group of enzymes whose specificity is directed mainly towards the exohydrolysis of 1,4-α-glucosidic linkages, and that hydrolyse oligosaccharides rapidly, relative to polysaccharide, which are hydrolysed relatively slowly, or not at all. The intestinal enzyme also hydrolyses polysaccharides, catalysing the reactions of EC 3.2.1.3 glucan 1,4-α-glucosidase and, more slowly, hydrolyses 1,6-α-D-glucose links.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9001-42-7

References:

1. Bruni, C.B., Sica, V., Auricchio, F. and Covelli, I. Further kinetic and structural characterization of the lysosomal α-D-glucoside glucohydrolase from cattle liver. Biochim. Biophys. Acta 212 (1970) 470-477. [PMID: 5466143]

2. Flanagan, P.R. and Forstner, G.G. Purification of rat intestinal maltase/glucoamylase and its anomalous dissociation either by heat or by low pH. Biochem. J. 173 (1978) 553-563. [PMID: 29602]

3. Larner, J. Other glucosidases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York , 1960, pp. 369-378.

4. Sivikami, S. and Radhakrishnan, A.N. Purification of rabbit intestinal glucoamylase by affinity chromatography on Sephadex G-200. Indian J. Biochem. Biophys. 10 (1973) 283-284. [PMID: 4792946]

5. Sørensen, S.H., Norén, O., Sjöström, H. and Danielsen, E.M. Amphiphilic pig intestinal microvillus maltase/glucoamylase. Structure and specificity. Eur. J. Biochem. 126 (1982) 559-568. [PMID: 6814909]

[EC 3.2.1.20 created 1961]

EC 3.2.1.21

Accepted name: β-glucosidase

Reaction: Hydrolysis of terminal, non-reducing β-D-glucosyl residues with release of β-D-glucose

Other name(s): gentiobiase; cellobiase; emulsin; elaterase; aryl-β-glucosidase; β-D-glucosidase; β-glucoside glucohydrolase; arbutinase; amygdalinase; p-nitrophenyl β-glucosidase; primeverosidase; amygdalase; linamarase; salicilinase; β-1,6-glucosidase

Systematic name: β-D-glucoside glucohydrolase

Comments: Wide specificity for β-D-glucosides. Some examples also hydrolyse one or more of the following: β-D-galactosides, α-L-arabinosides, β-D-xylosides, β-D-fucosides.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9001-22-3

References:

1. Chinchetru, M.A., Cabezas, J.A. and Calvo, P. Purification and characterization of a broad specificity β-glucosidase from sheep liver. Int. J. Biochem. 21 (1989) 469-476. [PMID: 2503402]

2. Conchie, J. β-Glucosidase from rumen liquor. Preparation, assay and kinetics of action. Biochem. J. 58 (1954) 552-560.

3. Dahlqvist, A. Pig intestinal β-glucosidase activities. I. Relation to β-galactosidase (lactase). Biochim. Biophys. Acta 50 (1961) 55-61.

4. Heyworth, R. and Walker, P.G. Almond-emulsin β-D-glucosidase and β-D-galactosidase. Biochem. J. 83 (1962) 331-335.

5. Larner, J. Other glucosidases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York , 1960, pp. 369-378.

6. Sano, K., Amemura, A. and Harada, T. Purification and properties of a β-1,6-glucosidase from Flavobacterium. Biochim. Biophys. Acta 377 (1975) 410-420. [PMID: 235305]

[EC 3.2.1.21 created 1961]

EC 3.2.1.22

Accepted name: α-galactosidase

Reaction: Hydrolysis of terminal, non-reducing α-D-galactose residues in α-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids

Other name(s): melibiase; α-D-galactosidase; α-galactosidase A; α-galactoside galactohydrolase

Systematic name: α-D-galactoside galactohydrolase

Comments: Also hydrolyses α-D-fucosides.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-35-8

References:

1. Suzuki, H., Li, S.-C. and Li, Y.-T. α-Galactosidase from Mortierella vinacea. Crystallization and properties. J. Biol. Chem. 245 (1970) 781-786. [PMID: 5418105]

2. Wiederschain, G. and Beyer, E. [Interrelation of α-D-fucosidase and α-D-galactosidase activities in man and animals]. Dokl. Akad. Nauk S.S.S.R. 231 (1976) 486-488. [PMID: 976079]

[EC 3.2.1.22 created 1961]

EC 3.2.1.23

Accepted name: β-galactosidase

Reaction: Hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides

Other name(s): lactase; β-lactosidase; maxilact; hydrolact; β-D-lactosidase; S 2107; lactozym; trilactase; β-D-galactanase; oryzatym; sumiklat

Systematic name: β-D-galactoside galactohydrolase

Comments: Some enzymes in this group hydrolyse α-L-arabinosides; some animal enzymes also hydrolyse β-D-fucosides and β-D-glucosides; cf. EC 3.2.1.108 lactase.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9031-11-2

References:

1. Blakely, J.A. and MacKenzie, S.L. Purification and properties of a β-hexosidase from Sporobolomyces singularis. Can. J. Biochem. 47 (1969) 1021-1025. [PMID: 5389663]

2. Kuby, S.A. and Lardy, H.A. Purification and kinetics of β-D-galactosidase from Escherichia coli, strain K-12. J. Am. Chem. Soc. 75 (1953) 890-896.

3. Kuo, C.H. and Wells, W.W. β-Galactosidase from rat mammary gland. Its purification, properties, and role in the biosynthesis of 6β-O-D-galactopyranosyl myo-inositol. J. Biol. Chem. 253 (1978) 3550-3556. [PMID: 418065]

4. Landman, O.E. Properties and induction of β-galactosidase in Bacillus megaterium. Biochim. Biophys. Acta 23 (1957) 558-569.

5. Llanillo, M., Perez, N. and Cabezas, J.A. β-Galactosidase and β-glucosidase activities of the same enzyme from rabbit liver. Int. J. Biochem. 8 (1977) 557-564.

6. Monod, J. and Cohn, M. La biosynthèse induite des enzymes (adaptation enzymatique). Adv. Enzymol. Relat. Subj. Biochem. 13 (1952) 67-119.

7. Wallenfels, K. and Malhotra, O.P. in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 409-430.

8. Asp, N.G., Dahlqvist, A. and Koldovský, O. Human small-intestinal β-galactosidases. Separation and characterization of one lactase and one hetero β-galactosidase. Biochem. J. 114 (1969) 351-359. [PMID: 5822067]

[EC 3.2.1.23 created 1961, modified 1980]

EC 3.2.1.24

Accepted name: α-mannosidase

Reaction: Hydrolysis of terminal, non-reducing α-D-mannose residues in α-D-mannosides

Systematic name: α-D-mannoside mannohydrolase

Other name(s): α-D-mannosidase; p-nitrophenyl-α-mannosidase; α-D-mannopyranosidase; 1,2-α-mannosidase; 1,2-α-D-mannosidase; exo-α-mannosidase

Comments: Also hydrolyses α-D-lyxosides and heptopyranosides with the same configuration at C-2, C-3 and C-4 as mannose.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9025-42-7

References:

1. Li, Y.-T. Presence of α-D-mannosidic linkage in glycoproteins. Liberation of D-mannose from various glycoproteins by α-mannosidase isolated from jack bean meal. J. Biol. Chem. 241 (1966) 1010-1012.

2. Winchester, B. Role of α-D-mannosidases in the biosynthesis and catabolism of glycoproteins. Biochem. Soc. Trans. 12 (1984) 522-524. [PMID: 6428944]

[EC 3.2.1.24 created 1961]

EC 3.2.1.25

Accepted name: β-mannosidase

Reaction: Hydrolysis of terminal, non-reducing β-D-mannose residues in β-D-mannosides

Other name(s): mannanase; mannase; β-D-mannosidase; β-mannoside mannohydrolase; exo-β-D-mannanase

Systematic name: β-D-mannoside mannohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 9025-43-8

References:

1. Adams, M., Richtmyer, N.K. and Hudson, C.S. Some enzymes present in highly purified invertase preparations; a contribution to the study of fructofuranosidases, galactosidases, glucosidases and mannosidases. J. Am. Chem. Soc. 65 (1943) 1369-1380.

2. Bartholomew, B.A. and Perry, A.L. The properties of synovial fluid β-mannosidase activity. Biochim. Biophys. Acta 315 (1973) 123-127. [PMID: 4743897]

3. Deuel, H., Lewuenberger, R. and Huber, G. Über den enzymatischen Abbau von Carubin, dem Galaktomannan aus Ceratonia siliqua L. Helv. Chim. Acta 33 (1950) 942-946.

4. Hylin, J.W. and Sawai, K. The enzymatic hydrolysis of Leucaena glauca galactomannan. Isolation of crystalline galactomannan depolymerase. J. Biol. Chem. 239 (1964) 990-992.

[EC 3.2.1.25 created 1961]

EC 3.2.1.26

Accepted name: β-fructofuranosidase

Reaction: Hydrolysis of terminal non-reducing β-D-fructofuranoside residues in β-D-fructofuranosides

Other name(s): invertase; saccharase; glucosucrase; β-h-fructosidase; β-fructosidase; invertin; sucrase; maxinvert L 1000; fructosylinvertase; alkaline invertase; acid invertase

Systematic name: β-D-fructofuranoside fructohydrolase

Comments: Substrates include sucrose; also catalyses fructotransferase reactions.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9001-57-4

References:

1. Myrbäck, K. Invertases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 379-396.

2. Neumann, N.P. and Lampen, J.O. Purification and properties of yeast invertase. Biochemistry 6 (1967) 468-475. [PMID: 4963242]

[EC 3.2.1.26 created 1961]

[EC 3.2.1.27 Deleted entry: α-1,3-glucosidase (EC 3.2.1.27 created 1961, deleted 1972)]

EC 3.2.1.28

Accepted name: α,α-trehalase

Reaction: α,α-trehalose + H2O = β-D-glucose + α-D-glucose

Other name(s): trehalase

Systematic name: α,α-trehalose glucohydrolase

Comments: The enzyme is an anomer-inverting glucosidase that catalyses the hydrolysis of the α-glucosidic O-linkage of α,α-trehalose, releasing initially equimolar amounts of α- and β-D-glucose. It is widely distributed in microorganisms, plants, invertebrates and vertebrates.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-52-9

References:

1. Myrbäck, K. and Örtenblad, B. Trehalose und Hefe. II. Trehalasewirkung von Hefepräparaten. Biochem. Z. 291 (1937) 61-69.

2. Kalf, G.F. and Rieder, S.V. The preparation and properties of trehalase. J. Biol. Chem. 230 (1958) 691-698. [PMID: 13525386]

3. Hehre, E.J., Sawai, T., Brewer, C.F., Nakano, M. and Kanda, T. Trehalase: stereocomplementary hydrolytic and glucosyl transfer reactions with α- and β-D-glucosyl fluoride. Biochemistry 21 (1982) 3090-3097. [PMID: 7104311]

4. Mori, H., Lee, J.H., Okuyama, M., Nishimoto, M., Ohguchi, M., Kim, D., Kimura, A. and Chiba, S. Catalytic reaction mechanism based on α-secondary deuterium isotope effects in hydrolysis of trehalose by European honeybee trehalase. Biosci. Biotechnol. Biochem. 73 (2009) 2466-2473. [PMID: 19897915]

[EC 3.2.1.28 created 1961, modified 2012]

[EC 3.2.1.29 Deleted entry: chitobiase. Now included with EC 3.2.1.52 β-L-N-acetylhexosaminidase (EC 3.2.1.29 created 1961, deleted 1972)]

[EC 3.2.1.30 Deleted entry: β-D-acetylglucosaminidase. Now included with EC 3.2.1.52 β-L-N-acetylhexosaminidase (EC 3.2.1.30 created 1961, deleted 1992)]

EC 3.2.1.31

Accepted name: β-glucuronidase

Reaction: a β-D-glucuronoside + H2O = D-glucuronate + an alcohol

Other name(s): β-glucuronide glucuronohydrolase glucuronidase; exo-β-D-glucuronidase; ketodase

Systematic name: β-D-glucuronoside glucuronosohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9001-45-0

References:

1. Diez, T. and Cabezas, J.A. Properties of two molecular forms of β-glucuronidase from the mollusc Littorina littorea L. Eur. J. Biochem. 93 (1978) 301-311.

2. Doyle, M.L., Katzman, P.A. and Doisy, E.A. Production and properties of bacterial β-glucuronidase. J. Biol. Chem. 217 (1955) 921-930.

3. Fishman, W.H. Beta-glucuronidase. Adv. Enzymol. Relat. Subj. Biochem. 16 (1955) 361-409.

4. Levvy, G.A. and Marsh, C.A. β-Glucuronidase, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 397-407.

5. Wakabayashi, M. and Fishman, W.H. The comparative ability of β-glucuronidase preparations (liver, Escherichia coli, Helix pomatia, and Patella vulgata) to hydrolyze certain steroid glucosiduronic acids. J. Biol. Chem. 236 (1961) 996-1001.

[EC 3.2.1.31 created 1961]

EC 3.2.1.32

Accepted name: endo-1,3-β-xylanase

Reaction: Random endohydrolysis of (1→3)-β-D-glycosidic linkages in (1→3)-β-D-xylans

Other name(s): xylanase (ambiguous); endo-1,3-β-xylosidase (misleading); 1,3-β-xylanase; 1,3-xylanase; β-1,3-xylanase; endo-β-1,3-xylanase; 1,3-β-D-xylan xylanohydrolase; xylan endo-1,3-β-xylosidase

Systematic name: 3-β-D-xylan xylanohydrolase

Comments: This enzyme is found mostly in marine bacteria, which break down the β(1,3)-xylan found in the cell wall of some green and red algae. The enzyme produces mainly xylobiose, xylotriose and xylotetraose.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-55-2

References:

1. Chen, W.P., Matsuo, M. and Tsuneo, Y. Purification and some properties of β-1,3-xylanase from Aspergillus terreus A-07. Agric. Biol. Chem. 50 (1986) 1183-1194.

2. Aoki, T., Araki, T. and Kitamikado, M. Purification and characterization of an endo-β-1,3-xylanase from Vibrio species. Nippon Suisan Gakkaishi 54 (1988) 277-281.

3. Araki, T., Tani, S., Maeda, K., Hashikawa, S., Nakagawa, H. and Morishita, T. Purification and characterization of β-1,3-xylanase from a marine bacterium, Vibrio sp. XY-214. Biosci. Biotechnol. Biochem. 63 (1999) 2017-2019. [PMID: 10635569]

4. Araki, T., Inoue, N. and Morishita, T. Purification and characterization of β-1,3-xylanase from a marine bacterium, Alcaligenes sp. XY-234. J. Gen. Appl. Microbiol. 44 (1998) 269-274. [PMID: 12501421]

5. Okazaki, F., Shiraki, K., Tamaru, Y., Araki, T. and Takagi, M. The first thermodynamic characterization of β-1,3-xylanase from a marine bacterium. Protein J. 24 (2005) 413-421. [PMID: 16328734]

[EC 3.2.1.32 created 1965, modified 2011]

EC 3.2.1.33

Accepted name: amylo-α-1,6-glucosidase

Reaction: Hydrolysis of (1→6)-α-D-glucosidic branch linkages in glycogen phosphorylase limit dextrin

Other name(s): amylo-1,6-glucosidase; dextrin 6-α-D-glucosidase; amylopectin 1,6-glucosidase; dextrin-1,6-glucosidase; glycogen phosphorylase-limit dextrin α-1,6-glucohydrolase

Systematic name: glycogen phosphorylase-limit dextrin 6-α-glucohydrolase

Comments: This enzyme hydrolyses an unsubstituted glucose unit linked by an α(1→6) bond to an α(1→4) glucose chain. The enzyme activity found in mammals and yeast is in a polypeptide chain containing two active centres. The other activity is similar to that of EC 2.4.1.25 (4-α-glucanotransferase), which acts on the glycogen phosphorylase limit dextrin chains to expose the single glucose residues, which the 6-α-glucosidase activity can then hydrolyse. Together, these two activities constitute the glycogen debranching system.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 9012-47-9

References:

1. Brown, D.H. and Brown, B.I. Enzymes of glycogen debranching: Amylo-1,6-glucosidase (I) and oligo-1,4<→1,4-glucanotransferase (II). Methods Enzymol. 8 (1966) 515-524.

2. Lee, E.Y.C., Carter, J.H., Nielsen, L.D. and Fischer, E.H. Purification and properties of yeast amylo-1,6-glucosidase-oligo-1,4 leads to 1,4-glucantransferase. Biochemistry 9 (1970) 2347-2355. [PMID: 5424210]

3. Nelson, T.E., Kolb, E. and Larner, J. Purification and properties of rabbit muscle amylo-1,6-glucosidase-oligo-1,4-1,4-transferase. Biochemistry 8 (1969) 1419-1428. [PMID: 5805288]

[EC 3.2.1.33 created 1965, modified 2000]

[EC 3.2.1.34 Deleted entry: chondroitinase. Now included with EC 3.2.1.35 hyalurononglucosaminidase (EC 3.2.1.34 created 1965, deleted 1972)]

EC 3.2.1.35

Accepted name: hyaluronoglucosaminidase

Reaction: Random hydrolysis of (1→4)-linkages between N-acetyl-β-D-glucosamine and D-glucuronate residues in hyaluronate

For diagram click here.

Other name(s): hyaluronidase; hyaluronoglucosidase; chondroitinase; chondroitinase I

Systematic name: hyaluronate 4-glycanohydrolase

Comments: Also hydrolyses (1→4)-β-D-glycosidic linkages between N-acetyl-galactosamine or N-acetylgalactosamine sulfate and glucuronic acid in chondroitin, chondroitin 4- and 6-sulfates, and dermatan.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 37326-33-3

References:

1. Meyer, K., Hoffman, P. and Linker, A. Hyaluronidases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 447-460.

2. Rapport, M.M., Myer, K. and Linker, A. Analysis of the products formed on hydrolysis of hyaluronic acid by testicular hyaluronidase. J. Am. Chem. Soc. 73 (1951) 2416-2420.

3. Weissmann, B. The transglycosylative action of testicular hyaluronidase. J. Biol. Chem. 216 (1955) 783-794.

[EC 3.2.1.35 created 1965, modified 1976, modified 2001 (EC 3.2.1.34 created 1965, incorporated 1972)]

EC 3.2.1.36

Accepted name: hyaluronoglucuronidase

Reaction: Random hydrolysis of (1→3)-linkages between β-D-glucuronate and N-acetyl-D-glucosamine residues in hyaluronate

Other name(s): hyaluronidase; glucuronoglucosaminoglycan hyaluronate lyase; orgelase

Systematic name: hyaluronate 3-glycanohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37288-34-9

References:

1. Linker, A., Meyer, K. and Hoffman, P. The production of hyaluronate oligosaccharides by leech hyaluronidase and alkali. J. Biol. Chem. 235 (1960) 924-927.

2. Meyer, K., Hoffman, P. and Linker, A. Hyaluronidases, in Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds.), The Enzymes, 2nd edn., vol. 4, Academic Press, New York, 1960, pp. 447-460.

[EC 3.2.1.36 created 1965, modified 1980]

EC 3.2.1.37

Accepted name: xylan 1,4-β-xylosidase

Reaction: Hydrolysis of (1→4)-β-D-xylans, to remove successive D-xylose residues from the non-reducing termini

Other name(s): xylobiase; β-xylosidase; exo-1,4-β-xylosidase; β-D-xylopyranosidase; β-xylosidase; β-xylosidase; exo-1,4-xylosidase; exo-1,4-β-D-xylosidase; 1,4-β-D-xylan xylohydrolase

Systematic name: 4-β-D-xylan xylohydrolase

Comments: Also hydrolyses xylobiose. Some other exoglycosidase activities have been found associated with this enzyme in sheep liver.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-53-0

References:

1. Chinchetru, M.A., Cabezas, J.A. and Calvo, P. Purification and characterization of a broad specificity β-glucosidase from sheep liver. Int. J. Biochem. 21 (1989) 469-476. [PMID: 2503402]

2. Howard, B.H., Jones, G. and Purdom, M.R. The pentosanases of some rumen bacteria. Biochem. J. 74 (1960) 173-180.

[EC 3.2.1.37 created 1965]

EC 3.2.1.38

Accepted name: β-D-fucosidase

Reaction: Hydrolysis of terminal non-reducing β-D-fucose residues in β-D-fucosides

Other name(s): β-fucosidase

Systematic name: β-D-fucoside fucohydrolase

Comment: Enzymes from some sources also hydrolyse β-D-galactosides and/or β-D-glucosides and/or α-L-arabinosides. The activity of EC 3.2.1.37 xylan 1,4-β-xylosidase, is an associated activity found in some sources (e.g. liver)

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 9025-34-7

References:

1. Chinchetru, M.A., Cabezas, J.A. and Calvo, P. Characterization and kinetics of β-D-gluco/fuco/galactosidase from sheep liver. Comp. Biochem. Physiol. B 75 (1983) 719-728. [PMID: 6413126]

2. Chinchetru, M.A., Cabezas, J.A. and Calvo, P. Purification and characterization of a broad specificity β-glucosidase from sheep liver. Int. J. Biochem. 21 (1989) 469-476. [PMID: 2503402]

3. Rodriguez, J.A., Cabezas, J.A. and Calvo, P. β-Fucosidase, β-glucosidase and β-galactosidase activities associated in bovine liver. Int. J. Biochem. 14 (1982) 695-698. [PMID: 6811346]

4. Wiederschain, G. and Prokopenkov, A. β-D-Galactosidase and β-D-fucosidase of pig kidney. Arch. Biochem. Biophys. 158 (1973) 539-543. [PMID: 4782520]

5. Wiederschain, G.Y., Beyer, E.M., Klyaschitsty, B.A. and Shashkov, A.S. Specificity patterns of different types of human fucosidase. Recognition of a certain region of the pyranose ring in sugars by the enzymes. Biochim. Biophys. Acta 659(1981) 434-444. [PMID: 6789883]

[EC 3.2.1.38 created 1965, deleted 1972, reinstated 1978]

EC 3.2.1.39

Accepted name: glucan endo-1,3-β-D-glucosidase

Reaction: Hydrolysis of (1→3)-β-D-glucosidic linkages in (1→3)-β-D-glucans

Other name(s): endo-1,3-β-glucanase; laminarinase; laminaranase; oligo-1,3-glucosidase; endo-1,3-β-glucanase; callase; β-1,3-glucanase; kitalase; 1,3-β-D-glucan 3-glucanohydrolase; endo-(1,3)-β-D-glucanase; (1→3)-β-glucan 3-glucanohydrolase; endo-1,3-β-D-glucanase; endo-1,3-β-glucosidase; 1,3-β-D-glucan glucanohydrolase

Systematic name: 3-β-D-glucan glucanohydrolase

Comments: Different from EC 3.2.1.6 endo-1,3(4)-β-glucanase. Very limited action on mixed-link (1,3-1,4-)-β-D-glucans. Hydrolyses laminarin, paramylon and pachyman.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9025-37-0

References:

1. Chesters, C.G.C. and Bull, A.T. The enzymic degradation of laminarin. 2. The multicomponent nature of fungal laminarinases. Biochem. J. 86 (1963) 31-38.

2. Reese, E.T. and Mandels, M. β-D-1,3-Glucanases in fungi. Can. J. Microbiol. 5 (1959) 173-185.

[EC 3.2.1.39 created 1965]

EC 3.2.1.40

Accepted name: α-L-rhamnosidase

Reaction: Hydrolysis of terminal non-reducing α-L-rhamnose residues in α-L-rhamnosides

Other name(s): α-L-rhamnosidase T; α-L-rhamnosidase N

Systematic name: α-L-rhamnoside rhamnohydrolase

Comments: The enzyme, found in animal tissues, plants, yeasts, fungi and bacteria, utilizes an inverting mechanism of hydrolysis, releasing β-L-rhamnose. Substrates include naringin, rutin, quercitrin, hesperidin, dioscin, terpenyl glycosides and many other natural glycosides containing terminal α-L-rhamnose.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37288-35-0

References:

1. Rosenfeld, E. and Wiederschein, G. The metabolism of L-rhamnose in animal tissues. Bull. Soc. Chim. Biol. 47 (1965) 1433-1440. [PMID: 5855461]

2. Kurosawa, Y., Ikeda, K. and Egami, F. α-L-rhamnosidases of the liver of Turbo cornutus and Aspergillus niger. J. Biochem. 73 (1973) 31-37. [PMID: 4632197]

3. Zverlov, V.V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J. and Schwarz, W.H. The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol. Microbiol. 35 (2000) 173-179. [PMID: 10632887]

4. Yanai, T. and Sato, M. Purification and characterization of an α-L-rhamnosidase from Pichia angusta X349. Biosci. Biotechnol. Biochem. 64 (2000) 2179-2185. [PMID: 11129592]

5. Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W. and Murata, K. Crystal structure of glycoside hydrolase family 78 α-L-Rhamnosidase from Bacillus sp. GL1. J. Mol. Biol. 374 (2007) 384-398. [PMID: 17936784]

6. Rabausch, U., Ilmberger, N. and Streit, W.R. The metagenome-derived enzyme RhaB opens a new subclass of bacterial B type α-L-rhamnosidases. J. Biotechnol. 191 (2014) 38-45. [PMID: 24815685]

[EC 3.2.1.40 created 1972]

EC 3.2.1.41

Accepted name: pullulanase

Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages in pullulan, amylopectin and glycogen, and in the α- and β-limit dextrins of amylopectin and glycogen

Glossary: pullulan = a linear polymer of 1→6-linked maltotriose units.

Other name(s): limit dextrinase (erroneous); amylopectin 6-glucanohydrolase; bacterial debranching enzyme; debranching enzyme; α-dextrin endo-1,6-α-glucosidase; R-enzyme; pullulan α-1,6-glucanohydrolase

Systematic name: pullulan 6-α-glucanohydrolase

Comments: Different from EC 3.2.1.142 (limit dextrinase) in its action on glycogen, and its rate of hydrolysis of limit dextrins. Its action on amylopectin is complete. Maltose is the smallest sugar that it can release from an α-(1<→6)-linkage.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9075-68-7

References:

1. Lee, E.Y.C. and Whelan, W.J. Glycogen and starch debranching enzymes, in Boyer, P.D. (Ed.), The Enzymes, 3rd edn., vol. 5, Academic Press, New York, 1972, pp. 191-234.

2. Bender, H. and Wallenfels, K. Pullulanase (an amylopectin and glycogen debranching enzyme) from Aerobacter aerogenes. Methods Enzymol. 8 (1966) 555-559.

3. Manners, D.J. Observations on the specificity and nomenclature of starch debranching enzymes. J. Appl. Glycosci. 44 (1997) 83-85.

[EC 3.2.1.41 created 1972, modified 1976, modified 2000 (EC 3.2.1.69 created 1972, incorporated 1976)]

EC 3.2.1.42

Accepted name: GDP-glucosidase

Reaction: GDP-glucose + H2O = D-glucose + GDP

Other name(s): guanosine diphosphoglucosidase; guanosine diphosphate D-glucose glucohydrolase

Systematic name: GDP-glucose glucohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37288-36-1

References:

1. Sonnino, S., Carinatti, H. and Cabib, E. Guanosine diphosphate D-glucose glucohydrolase. Arch. Biochem. Biophys. 116 (1966) 26-33. [PMID: 5963308]

[EC 3.2.1.42 created 1972]

EC 3.2.1.43

Accepted name: β-L-rhamnosidase

Reaction: Hydrolysis of terminal, non-reducing β-L-rhamnose residues in β-L-rhamnosides

Systematic name: β-L-rhamnoside rhamnohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37288-37-2

References:

1. Barker, S.A., Somers, P.J. and Stacey, M. Arrangement of the L-rhamnose units in Diplococcus pneumoniae type II polysaccharide. Carbohydr. Res. 1 (1965) 106-115.

[EC 3.2.1.43 created 1972]

EC 3.2.1.44

Accepted name: fucoidanase

Reaction: Endohydrolysis of (1→2)-α-L-fucoside linkages in fucoidan without release of sulfate

Other name(s): α-L-fucosidase

Systematic name: poly[(1→2)-α-L-fucoside-4-sulfate] glycanohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37288-38-3

References:

1. Thanassi, N.M. and Nakada, H.I. Enzymic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Halotus species. Arch. Biochem. Biophys. 118 (1967) 172-177.

[EC 3.2.1.44 created 1972]

EC 3.2.1.45

Accepted name: glucosylceramidase

Reaction: a D-glucosyl-N-acylsphingosine + H2O = D-glucose + an N-acylsphingosine

For diagram of the reaction click here.

Other name(s): psychosine hydrolase; glucosphingosine glucosylhydrolase; GlcCer-β-glucosidase; β-D-glucocerebrosidase; glucosylcerebrosidase; β-glucosylceramidase; ceramide glucosidase; glucocerebrosidase; glucosylsphingosine β-glucosidase; glucosylsphingosine β-D-glucosidase

Systematic name: D-glucosyl-N-acylsphingosine glucohydrolase

Comments: Also acts on glucosylsphingosine (cf. EC 3.2.1.62 glycosylceramidase).

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 37228-64-1

References:

1. Brady, R.O., Kanfer, J.N. and Shapiro, D. The metabolism of glucocerebrosides. I. Preparation and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J. Biol. Chem. 240 (1966) 39-43.

2. Vaccaro, A.M., Muscillo, M. and Suzuki, K. Characterization of human glucosylsphingosine glucosyl hydrolase and comparison with glucosylceramidase. Eur. J. Biochem. 146 (1985) 315-321. [PMID: 3967661]

[EC 3.2.1.45 created 1972]

EC 3.2.1.46

Accepted name: galactosylceramidase

Reaction: a D-galactosyl-N-acylsphingosine + H2O = D-galactose + an N-acylsphingosine

Other name(s): cerebroside galactosidase; galactocerebroside.β-galactosidase; galactosylcerebrosidase; galactocerebrosidase; ceramide galactosidase; galactocerebroside galactosidase; galactosylceramide.β-galactosidase; cerebroside β-galactosidase; galactosylceramidase I; β-galactosylceramidase; galactocerebroside-β-D-galactosidase; lactosylceramidase I; β-galactocerebrosidase; lactosylceramidase

Systematic name: D-galactosyl-N-acylsphingosine galactohydrolase

Comments: cf. EC 3.2.1.62 glycosylceramidase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9027-89-8

References:

1. Brady, R.O., Gal, A.E., Kanfer, J.N. and Bradley, R.M. The metabolism of glucocerebrosides. 3. Purification and properties of a glucosyl- and galactosylceramide-cleaving enzyme from rat intestinal tissue. J. Biol. Chem. 240 (1965) 3766-3770. [PMID: 5320641]

[EC 3.2.1.46 created 1972]

EC 3.2.1.47

Accepted name: galactosylgalactosylglucosylceramidase

Reaction: α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide + H2O = D-galactose + β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide

For diagram of reaction click here.

Other name(s): trihexosyl ceramide galactosidase; ceramide trihexosidase; ceramidetrihexoside α-galactosidase; trihexosylceramide α-galactosidase; ceramidetrihexosidase

Systematic name: α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide galactohydrolase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 9023-01-2

References:

1. Brady, R.O., Gal, A.E., Bradley, R.M. and Matensson, E. The metabolism of ceramide trihexosides. I. Purification and properties of an enzyme that cleaves the terminal galactose molecule of galactosylgalactosylglucosylceramide. J. Biol. Chem. 242 (1967) 1021-1026. [PMID: 6020428]

2. Mapes, C.A. and Sweeley, C.C. Substrate specificity of ceramide trihexosidase. FEBS Lett. 25 (1972) 279-281. [PMID: 11946769]

[EC 3.2.1.47 created 1972, modified 2011]

EC 3.2.1.48

Accepted name: sucrose α-glucosidase

Reaction: Hydrolysis of sucrose and maltose by an α-D-glucosidase-type action

Other name(s): sucrose α-glucohydrolase; sucrase; sucrase-isomaltase; sucrose.alpha.-glucohydrolase; intestinal sucrase; sucrase(invertase)

Systematic name: sucrose-α-D-glucohydrolase

Comments: This enzyme is isolated from intestinal mucosa as a single polypeptide chain that also displays activity towards isomaltose (EC 3.2.1.10 oligo-1,6-glucosidase).

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 37288-39-4

References:

1. Conklin, K.A., Yamashiro, K.M. and Gray, G.M. Human intestinal sucrase-isomaltase. Identification of free sucrase and isomaltase and cleavage of the hybrid into active distinct subunits. J. Biol. Chem. 250 (1975) 5735-5741. [PMID: 807575]

2. Hauri, H.-P., Quaroni, A. and Isselbacher, K.J. Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc. Natl. Acad. Sci. USA 76 (1979) 5183-5186. [PMID: 291933]

3. Kolinska, J. and Kraml, J. Separation and characterization of sucrose-isomaltase and of glucoamylase of rat intestine. Biochim. Biophys. Acta 284 (1972) 235-247. [PMID: 5073761]

4. Sigrist, H., Ronner, P. and Semenza, G. A hydrophobic form of the small-intestinal sucrase-isomaltase complex. Biochim. Biophys. Acta 406 (1975) 433-446. [PMID: 1182172]

5. Sjöström, H., Norén, O., Christiansen, L., Wacker, H. and Semenza, G. A fully active, two-active-site, single-chain sucrase.isomaltase from pig small intestine. Implications for the biosynthesis of a mammalian integral stalked membrane protein. J. Biol. Chem. 255 (1980) 11332-11338. [PMID: 7002920]

6. Takesue, Y. Purification and properties of rabbit intestinal sucrase. J. Biochem. (Tokyo) 65 (1969) 545-552. [PMID: 5804876]

[EC 3.2.1.48 created 1972]

EC 3.2.1.49

Accepted name: α-N-acetylgalactosaminidase

Reaction: Cleavage of non-reducing α-(1→3)-N-acetylgalactosamine residues from human blood group A and AB mucin glycoproteins, Forssman hapten and blood group A lacto series glycolipids

Other name(s): α-acetylgalactosaminidase; N-acetyl-α-D-galactosaminidase; N-acetyl-α-galactosaminidase; α-NAGAL; α-NAGA; α-GalNAcase

Systematic name: α-N-acetyl-D-galactosaminide N-acetylgalactosaminohydrolase

Comments: The human lysosomal enzyme is involved in the degradation of blood type A epitope.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9075-63-2

References:

1. Asfaw, B., Schindler, D., Ledvinova, J., Cerny, B., Smid, F. and Conzelmann, E. Degradation of blood group A glycolipid A-6-2 by normal and mutant human skin fibroblasts. J. Lipid Res. 39 (1998) 1768-1780. [PMID: 9741689]

2. Zhu, A., Monahan, C., Wang, Z.K. and Goldstein, J. Expression, purification, and characterization of recombinant α-N-acetylgalactosaminidase produced in the yeast Pichia pastoris. Protein Expr. Purif. 8 (1996) 456-462. [PMID: 8954893]

3. Clark, N.E. and Garman, S.C. The 1.9 Å structure of human α-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases. J. Mol. Biol. 393 (2009) 435-447. [PMID: 19683538]

4. Hoskins, L.C., Boulding, E.T. and Larson, G. Purification and characterization of blood group A-degrading isoforms of α-N-acetylgalactosaminidase from Ruminococcus torques strain IX-70. J. Biol. Chem. 272 (1997) 7932-7939. [PMID: 9065462]

5. Harun-Or-Rashid, M., Matsuzawa, T., Satoh, Y., Shiraishi, T., Ando, M., Sadik, G. and Uda, Y. Purification and characterization of α-N-acetylgalactosaminidases I and II from the starfish Asterina amurensis. Biosci. Biotechnol. Biochem. 74 (2010) 256-261. [PMID: 20139603]

6. Weignerova, L., Filipi, T., Manglova, D. and Kren, V. Induction, purification and characterization of α-N-acetylgalactosaminidase from Aspergillus niger. Appl. Microbiol. Biotechnol. 79 (2008) 769-774. [PMID: 18443780]

7. Ashida, H., Tamaki, H., Fujimoto, T., Yamamoto, K. and Kumagai, H. Molecular cloning of cDNA encoding α-N-acetylgalactosaminidase from Acremonium sp. and its expression in yeast. Arch. Biochem. Biophys. 384 (2000) 305-310. [PMID: 11368317]

[EC 3.2.1.49 created 1972, modified 2011]

EC 3.2.1.50

Accepted name: α-N-acetylglucosaminidase

Reaction: Hydrolysis of terminal non-reducing N-acetyl-D-glucosamine residues in N-acetyl-α-D-glucosaminides

Other name(s): α-acetylglucosaminidase; N-acetyl-α-D-glucosaminidase; N-acetyl-α-glucosaminidase; α-D-2-acetamido-2-deoxyglucosidase

Systematic name: α-N-acetyl-D-glucosaminide N-acetylglucosaminohydrolase

Comments: Hydrolyses UDP-N-acetylglucosamine.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37288-40-7

References:

1. von Figura, K. Human α-N-acetylglucosaminidase. 1. Purification and properties. Eur. J. Biochem. 80 (1977) 523-533. [PMID: 411658]

2. von Figura, K. Human α-N-acetylglucosaminidase. 2. Activity towards natural substrates and multiple recognition forms. Eur. J. Biochem. 80 (1977) 535-542. [PMID: 923593]

3. Weissmann, B., Rowen, G., Marshall, J. and Friederici, D. Mammalian α-acetylglucosaminidase. Enzymic properties, tissue distribution, and intracellular localization. Biochemistry 6 (1967) 207-214. [PMID: 4291567]

4. Werries, E., Wollek, E., Gottschalk, A. and Buddecke, E. Separation of N-acetyl-α-glucosaminidase and N-acetyl-α-galactosaminidase from ox spleen. Cleavage of the O-glycosidic linkage between carbohydrate and polypeptide in ovine and bovine submaxillary glycoprotein by N-acetyl-α-galactosaminidase. Eur. J. Biochem. 10 (1969) 445-449. [PMID: 5348072]

[EC 3.2.1.50 created 1972]


Continued with EC 3.2.1.51 to EC 3.2.1.100
Return to EC 3 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page